
Tom Peterka

tpeterka@mcs.anl.gov

Mathematics and Computer Science Division
LANS Seminar 6/9/10

Scalable Data Analysis

Jet data courtesy Kwan-
Liu Ma, UC Davis.

Image courtesy Wes
Kendall, UTK

“I have had my results for a long time, but I do not yet
know how I am to arrive at them.”
 –Carl Friedrich Gauss, 1777-1855

2

400 Years of
Visualization

McCormick et al., 1987

Galileo, 1610 John Snow, 1854
William Playfair, 1786

Scientific Data Analysis in HPC Environments"

A linear,
 sequential
 pipeline where
 tasks mapped
 to
 architectures
 in fixed
 fashion is
 robust but not
 necessarily
 scalable.

“Models … produce data in amounts that make storage expensive, movement cumbersome,
visualization difficult, and detailed analysis impossible. The result is a significantly reduced
scientific return from the nation's largest computational efforts.” -Mark Rast, Laboratory for
Atmospheric and Space Physics, University of Colorado

3

The Data-Intensive Nature of Computing and Analysis

Machine FLOPS
(Pflop/s)

Storage B/W
(GB/s)

Flops per
byte

stored

Bytes comp.
per byte
stored

LLNL BG/L 0.6 43 O(10 4) O(10 3)

Jaguar XT4 0.3 42 O(10 4) O(10 3)
Intrepid BG/

P 0.6 50 O(10 4) O(10 3)

Roadrunner 1.0 50 O(10 5) O(10 4)

Jaguar XT5 1.4 42 O(10 5) O(10 4)

Normalized Storage / Compute Metrics

-In 2001, Flops per bytes stored was
approximately 500. Ref: John May, 2001.

-DOE science applications generate
results at an average rate of 40 flops per
byte of data. Ref: Murphy et al. ICS’05.

The relative percentage of time in the stages of
 volume rendering as a function of system size.
 Large visualization is dominated by data
 movement: I/O and communication.

“Datasets being produced by experiments and simulations are rapidly outstripping our ability
to explore and understand them” –Johnson et al., 2007.

4

“Analysis and visualization will be limiting factors in gaining insight from exascale data.”
–Dongarra et al., International Exascale Software Project Draft Road Map, 2009.

Scalable Data Analysis"

A dataflow
 network where
 tasks map to a

 variety of
 architectures
 to minimize

 data movement
 and latency

“The combination of massive scale and complexity is such that high performance computers
will be needed to analyze data, as well as to generate it through modeling and simulation.”
–Lucy Nowell, Scientific Data Management and Analysis at Extreme Scale, Office of Science Program
Announcement LAB 10-256, 2010. 5

6

Large-Scale Parallel Volume Rendering

Parallel Volume Rendering on
 the IBM Blue Gene/P.
 EGPGV’08.

Parallel structure for
volume rendering
algorithm consists of
3 stages performed
in parallel

Entropy over
100 time-steps

7

Benchmarking Performance

Scalability over a
 variety of data, image,
 and system sizes.

Grid
Size

Time-
step
size
(GB)

Image
size
(px)

Procs

Tot.
time
(s)

% I/O Read B/
W (GB/s)

22403 42 20483 8K 51 96 0.9
16K 43 97 1.0
32K 35 96 1.3

44803 335 40963 8K 316 96 1.1
16K 272 97 1.3
32K 220 96 1.6

Volume rendering performance at large size is
 dominated by I/O.

End-to-End Study of Parallel Volume Rendering on the IBM Blue Gene/P. ICPP’09.

Changing data file
layout can improve

I/O performance,
shown by access

pattern signatures
and performance

data.

8

I/O Aggregation and Hybrid
Parallelism

Assessing Improvements to the Parallel Volume Rendering
 Pipeline at Large Scale. SC08 Ultrascale Visualization
 Workshop.

Parallel pipelining: I/O latency in a time series can be masked by visualizing multiple time steps in
 parallel pipelines. Each of the pipelines below is further parallelized among multiple nodes.

Parallel image writing and
 I/O subsetting:
 Controlling number of
 total processes that
 perform parallel writing
 can boost performance.

4 threads

4 procs

1 node

1 node

Combining threads with processes reduces interprocess
 communication during image compositing.

9

Large Scale Parallel Image Compositing

The final stage in sort-last parallel visualization algorithms:
1.  Partition data among processes
2.  Visualize local data
3.  Composite resulting images into one

Composition = communication + computation

The computation is usually an alpha-blend called “Over”
i = (1.0 – αold) * inew + iold
α = (1.0 – αold) * αnew +α old

where i = intensity (R,G,B), α = opacity

A Configurable Algorithm for Parallel Image-Compositing Applications. Peterka et al., SC09

10

Direct-Send, Binary Swap, and Radix-k

Radix-k: Managed parallelism and contention, no power of 2 limitations

Direct-send: Parallel, contentious Binary swap: Low parallelism, limited to powers of 2

11

Radix-k: Configurable to Different Architectures

- Increase Concurrency: More participants per group than binary swap (k > 2)

- Manage contention: limiting k value (k < p)

- Overlap communication with computation: nonblocking and careful ordering of operation

- No penalty for non-powers-of two numbers of processes: inherent in the algorithm design

12

Profiling Actual Cost with MPE & Jumpshot

Jumpshot profile of binary swap for 64
processes is highly synchronized into 6
compute – communication rounds.

Radix-k for 64 processes factored into 2
rounds of k = [8, 8] overlaps communication
with computation whenever possible.

13

Radix-k Performance on Blue Gene/P Intrepid

Radix-k improves 40% over binary swap at non-powers-of-two process counts. Left: p varies
from 32 to 1024 in steps of 32. Right: p continues from 1024 to 35,000 in steps of 1024.

14

Optimized Radix-k at Scale
 zoom = 3.0 zoom = 1.5 zoom = 0.5

3X – 6X
improvement over
optimized binary
swap (with
bounding boxes
and RLE) in many
cases. 64Mpix at
32K processes can
be composited at .
08 s, or 12.5 fps.

Examples of volume rendering at the 3 zoom levels shown below

P 4
Mpix

8
Mpix

16
Mpix

32
Mpix

8 8 8 8 8

16 16 16 16 16

32 32 32 32 32

64 64 64 64 64

128 64 128 128 128

256 64 128 128 128

512 64 128 128 128

1 K 64 32 128 128

2 K 32 32 128 128

4 K 32 32 32 32

8 K 32 32 32 32

16 K 32 32 32 32

32 K 32 32 32 32

Accelerating and Benchmarking Radix-k Image Compositing at Large-Scale. Kendall et al., EGPGV’10

Benchmarked target k-values
for Intrepid and other
machines after RLE and
bounding box optimizations.

Large-Scale Parallel Particle Tracing

Parallel structure for
flow visualization
algorithm consists of
iterations of particle
tracing and transfer,
followed by a
rendering stage.

Ocean current
data courtesy
Rob Jacob, ANL

Type IA supernova
data courtesy
George Jordan,
UofC FLASH
Center

Jet data courtesy
Kwan-Liu Ma, UC
Davis

15

16

4D Block Structure

- True 4D blocks
- Blocks consist of 4D voxels (eg 16x16x16x4 time steps)
- Messages are sent when any of the 4 extents are exceeded
- 3^4 = 81 neighbors for regular grid, counting self
- Variable number of neighbors for AMR grid

17

Time Blocks

- A way to control in-core / out-of-core behavior
- One time block resident in memory at any one time
- Memory distributed in spatial (x,y,z) dimensions, serialized in time dimension

18

ExchangeNeighbors()

Organize sending block ids, # points, by process rank
Exchange point counts (MPI_Allltoallv)
Unpack vector of receiving point counts
Pack vector of sending points
Exchange points (MPI_Alltoallv)
Unpack vector of received points

For each neighbor,
 Pack messages of sending block ids, # points, points
Exchange point counts and points (MPI_Isend, Irecv)
For each neighbor,
 Unpack vector of receiving points

-MPI-2 one sided communication
-LibNBC sparse nonblocking collectives

Old

Current

Future

Strong Scaling Baseline Performance

Thermal hydraulics flow. 134M cells, 8K particles.
1,2,4,8,16 round robin blocks per process.

19

Particle Density: What 8K Particles Look Like

8K particles in thermal hydraulics flow.
Dense seeding, while not visually useful, is
necessary for querying flow features and
generating derived fields such as
divergence using FTLE.

200 particles in thermal hydraulics flow.
Sparse seeding is useful for interactive
visual exploration. Vortices and convective
currents are evident.

20

21

Apply I/O and MPI Expertise to Data-Intensive Analysis

Ongoing, Future
- Continue to collaborate with others in developing infrastructure for scalable analysis
in other HPC subsystems

- ION analysis
- Coupling storage and analysis

- Strengthen collaborations with scientists to integrate analysis with applications
- In situ analysis
- Information-theoretic analysis

- Continue to develop immersive interfaces and environments for science
- Immersive environments for material interfaces
- NG-CAVE environment for a variety of scientific and medical applications

Conclusions
- HPC resources can be harnessed for scalable analysis
- Scalable analysis is data-intensive: Moving data, transforming data, interacting with data
- Detailed study of data movement, both network and storage, is needed
- Results impact application tools as well as systems software libs

Tom Peterka

tpeterka@mcs.anl.gov

Mathematics and Computer Science Division

Acknowledgments:

Facilities
Argonne Leadership Computing Facility (ALCF)
Oak Ridge National Center for Computational

 Sciences (NCCS)

Funding
US DOE SciDAC UltraVis Institute

People
Rob Ross, Han-Wei Shen, Jian Huang, Wes

 Kendall, Rajeev Thakur, Dave Goodell, Kwan-Liu
 Ma, Hongfeng Yu

Thank you

LANS Seminar 6/9/10

“The purpose of computing is insight, not numbers.”
 –Richard Hamming, 1962

